Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))

Q is empty.

Q DP problem:
The TRS P consists of the following rules:

DOUBLE1(s1(x)) -> DOUBLE1(x)
PLUS2(s1(x), y) -> PLUS2(x, y)
PLUS2(s1(x), y) -> MINUS2(x, y)
PLUS2(s1(x), y) -> DOUBLE1(y)
PLUS2(s1(x), y) -> PLUS2(x, s1(y))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
PLUS2(s1(x), y) -> PLUS2(minus2(x, y), double1(y))

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DOUBLE1(s1(x)) -> DOUBLE1(x)
PLUS2(s1(x), y) -> PLUS2(x, y)
PLUS2(s1(x), y) -> MINUS2(x, y)
PLUS2(s1(x), y) -> DOUBLE1(y)
PLUS2(s1(x), y) -> PLUS2(x, s1(y))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
PLUS2(s1(x), y) -> PLUS2(minus2(x, y), double1(y))

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 3 SCCs with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPAfsSolverProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DOUBLE1(s1(x)) -> DOUBLE1(x)

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

DOUBLE1(s1(x)) -> DOUBLE1(x)
Used argument filtering: DOUBLE1(x1)  =  x1
s1(x1)  =  s1(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPAfsSolverProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS2(s1(x), s1(y)) -> MINUS2(x, y)

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
Used argument filtering: MINUS2(x1, x2)  =  x2
s1(x1)  =  s1(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPAfsSolverProof

Q DP problem:
The TRS P consists of the following rules:

PLUS2(s1(x), y) -> PLUS2(x, y)
PLUS2(s1(x), y) -> PLUS2(x, s1(y))
PLUS2(s1(x), y) -> PLUS2(minus2(x, y), double1(y))

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

PLUS2(s1(x), y) -> PLUS2(x, y)
PLUS2(s1(x), y) -> PLUS2(x, s1(y))
PLUS2(s1(x), y) -> PLUS2(minus2(x, y), double1(y))
Used argument filtering: PLUS2(x1, x2)  =  x1
s1(x1)  =  s1(x1)
minus2(x1, x2)  =  x1
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
double1(0) -> 0
double1(s1(x)) -> s1(s1(double1(x)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(s1(x), y) -> plus2(x, s1(y))
plus2(s1(x), y) -> s1(plus2(minus2(x, y), double1(y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.